Srinivasa Ramanujan: Indian mathematician


A leading Indian daily started a series on not so ordinary Indian people just before the Independence day on August 15th. On the d-day, ex Indian President APJ Abdul Kalam wrote a piece and talked about Srinivasa Ramanujan, one of the greatest mathematician of current times, from the land that created zero.

He is the person behind Ramanujan number, 1729 which is the smallest number to be a sum of two cubes in two different ways:

1729 = 9*9*9 + 10*10*10
1729 = 1*1*1 + 12*12*12

He was given books on advanced trigonometry which he mastered by the age of 13. While still in India, Ramanujan recorded the bulk of his results in four notebooks of loose leaf paper. These results were mostly written up without any derivations. This is probably the origin of the misperception that Ramanujan was unable to prove his results and simply thought up the final result directly. Mathematician Bruce C. Berndt, in his review of these notebooks and Ramanujan’s work, says that Ramanujan most certainly was able to make the proofs of most of his results, but chose not to.

Ramanujan is generally hailed as an all-time great mathematician, like Leonhard Euler, Carl Friedrich Gauss, and Carl Gustav Jacob Jacobi, for his natural mathematical genius. G. H. Hardy quotes: “The limitations of his knowledge were as startling as its profundity. Here was a man who could work out modular equations and theorems… to orders unheard of, whose mastery of continued fractions was… beyond that of any mathematician in the world, who had found for himself the functional equation of the zeta function and the dominant terms of many of the most famous problems in the analytic theory of numbers; and yet he had never heard of a doubly-periodic function or of Cauchy’s theorem, and had indeed but the vaguest idea of what a function of a complex variable was…”. Hardy went on to claim that his greatest contribution to mathematics was discovering Ramanujan.


Licensing and information about the blog available here.